
X20(c)CS1030

X20(c)CS1030

1 General information

In addition to the standard I/O, complex devices often need to be connected. The X20CS communication modules
are intended precisely for cases like this. As normal X20 electronics modules, they can be placed anywhere on
the remote backplane.

• RS485/RS422 interface for serial, remote connection of complex devices to the X20 system
• Integrated terminating resistor

2 Coated modules

Coated modules are X20 modules with a protective coating for the electronics component. This coating protects
X20c modules from condensation and corrosive gases.
The modules' electronics are fully compatible with the corresponding X20 modules.

For simplification purposes, only images and module IDs of uncoated modules are used in this data
sheet.

The coating has been certified according to the following standards:

• Condensation: BMW GS 95011-4, 2x 1 cycle
• Corrosive gas: EN 60068-2-60, method 4, exposure 21 days

3 Order data
Order number Short description Figure

X20 electronics module communication
X20CS1030 X20 interface module, 1 RS422/485 interface, max. 115.2 kbit/s
X20cCS1030 X20 interface module, coated, 1 RS422/485 interface, max.

115.2 kbit/s
Required accessories
Bus modules

X20BM11 X20 bus module, 24 VDC keyed, internal I/O supply continuous
X20BM15 X20 bus module, with node number switch, 24 VDC keyed, in-

ternal I/O power supply connected through
X20cBM11 X20 bus module, coated, 24 VDC keyed, internal I/O supply con-

tinuous
Terminal blocks

X20TB06 X20 terminal block, 6-pin, 24 VDC keyed
X20TB12 X20 terminal block, 12-pin, 24 VDC keyed

Table 1: X20CS1030, X20cCS1030 - Order data

Data sheet V 3.31 1

X20(c)CS1030

4 Technical data
Order number X20CS1030 X20cCS1030
Short description
Communication module 1x RS485/RS422
General information
B&R ID code 0x1FD0 0xE500
Status indicators Data transfer, terminating resistor, operating state, module status
Diagnostics

Module run/error Yes, using LED status indicator and software
Data transfer Yes, using LED status indicator
Terminating resistor Yes, using LED status indicator

Power consumption
Bus 0.01 W
Internal I/O 1.44 W

Additional power dissipation caused by actuators
(resistive) [W]

-

Certifications
CE Yes
ATEX Zone 2, II 3G Ex nA nC IIA T5 Gc

IP20, Ta (see X20 user's manual)
FTZÚ 09 ATEX 0083X

UL cULus E115267
Industrial control equipment

HazLoc cCSAus 244665
Process control equipment

for hazardous locations
Class I, Division 2, Groups ABCD, T5

DNV GL Temperature: B (0 - 55°C)
Humidity: B (up to 100%)

Vibration: B (4 g)
EMC: B (bridge and open deck)

LR ENV1
KR Yes
ABS Yes
EAC Yes
KC Yes -

Interfaces
Interface IF1

Signal RS485/RS422
Variant Connection made using 12-pin terminal block X20TB12
Number of stations RS485: Maximum 32 stations

RS422: Maximum 10 stations (receivers)
Max. distance 1200 m
Transfer rate Max. 115.2 kbit/s
FIFO buffer 1 kB
Terminating resistor Integrated in module
Controller UART type 16C550 compatible

Electrical properties
Electrical isolation RS485/RS422 (IF1) isolated from bus and I/O power supply
Operating conditions
Mounting orientation

Horizontal Yes
Vertical Yes

Installation elevation above sea level
0 to 2000 m No limitation
>2000 m Reduction of ambient temperature by 0.5°C per 100 m

Degree of protection per EN 60529 IP20
Ambient conditions
Temperature

Operation
Horizontal mounting orientation -25 to 60°C
Vertical mounting orientation -25 to 50°C

Derating See section "Derating".
Storage -40 to 85°C
Transport -40 to 85°C

Relative humidity
Operation 5 to 95%, non-condensing Up to 100%, condensing
Storage 5 to 95%, non-condensing
Transport 5 to 95%, non-condensing

Mechanical properties
Note Order 1x terminal block X20T-

B06 or X20TB12 separately.
Order 1x bus module X20BM11 separately.

Order 1x terminal block X20T-
B06 or X20TB12 separately.

Order 1x bus module X20cBM11 separately.
Pitch 12.5+0.2 mm

Table 2: X20CS1030, X20cCS1030 - Technical data

2 Data sheet V 3.31

X20(c)CS1030

5 LED status indicators

For a description of the various operating modes, see section "Additional information - Diagnostic LEDs" in the
X20 system user's manual.

Figure LED Color Status Description
Off No power to module
Single flash RESET mode
Double flash BOOT mode (during firmware update)1)

Blinking PREOPERATIONAL mode

r Green

On RUN mode
Off No power to module or everything OK
Single flash An I/O error has occurred, see "Error message status bits" on page 14

e Red

On Error or reset status
e + r Red on / Green single flash Invalid firmware
Tx Yellow On The module transmits data via the RS485/RS422 interface
Rx Yellow On The module receives data via the RS485/RS422 interface
T Yellow On Terminating resistor integrated in the module switched on

1) Depending on the configuration, a firmware update can take up to several minutes.

6 Pinout

RS485 mode

DATA

GND

Tx

X2
0

C
S

10
30 r e

Rx

DATA\

GND

T

RS422 mode

TXD

RXD

GND

Tx

X2
0

C
S

10
30 r e

Rx

TXD\

RXD\

GND

T

Data sheet V 3.31 3

X20(c)CS1030

7 Terminating resistor

On Off

Switch for terminating resistor

A terminating resistor is already integrated in the communication module. The terminating resistor can be switched
on or off in RS485 bus mode with a switch on the bottom of the housing. An enabled terminating resistor is indicated
by LED "T".

Information:
In RS422 bus mode, the terminating resistor between RXD and RXD\ is not switched off. This must be
taken into account in the cable routing.
No limitations in all other modes.

8 Derating

There is no derating when operated below 55°C.
During operation over 55°C, the power dissipation of the modules to the left and right of this module is not permitted
to exceed 1.15 W!
For an example of calculating the power dissipation of I/O modules, see section "Mechanical and electrical config-
uration - Power dissipation of I/O modules" in the X20 user's manual.

N
ei

gh
bo

rin
g

X2
0

m
od

ul
e

N
ei

gh
bo

rin
g

X2
0

m
od

ul
e

Po
w

er
 d

is
si

pa
tio

n
≤

1.
15

 W

X2
0

m
od

ul
e

Po
w

er
 d

is
si

pa
tio

n
>

1.
15

 W

X2
0

m
od

ul
e

Po
w

er
 d

is
si

pa
tio

n
>

1.
15

 W

Th
is

 m
od

ul
e

Po
w

er
 d

is
si

pa
tio

n
≤

1.
15

 W

9 Usage after the X20IF1091-1

If this module is operated after X2X Link module X20IF1091-1, delays may occur during the Flatstream transfer.
For detailed information, see section "Data transfer on the Flatstream" in X20IF1091-1.

10 UL certificate information

To install the module according to the UL standard, the following rules must be observed.

Information:
• Use copper conductors only. Minimum temperature rating of the cable to be connected to the

field wiring terminals: 61°C, 28 - 14 AWG.
• All models are intended to be used in a final safety enclosure that must conform with require-

ments for protection against the spread of fire and have adequate rigidity per UL 61010-1 and
UL 61010-2-201.

• The external circuits intended to be connected to the device shall be galv. separated from mains
supply or hazardous live voltage by reinforced or double insulation and meet the requirements
of SELV/PELV circuit.

• If the equipment is used in not specified manner, the protection provided by the equipment
may be impaired.

• Repairs can only be made by B&R.

4 Data sheet V 3.31

X20(c)CS1030

11 Register description

11.1 General data points

In addition to the registers described in the register description, the module has additional general data points.
These are not module-specific but contain general information such as serial number and hardware variant.
General data points are described in section "Additional information - General data points" in the X20 system user's
manual.

11.2 Function model 2 - Stream and Function model 254 - Cyclic stream

Function models "Stream" and "Cyclic stream" use a module-specific driver for the operating system. The interface
can be controlled using library "DvFrame" and reconfigured at runtime.
Function model - Stream
In function model "Stream", the CPU communicates with the module acyclically. The interface is relatively conve-
nient, but the timing is very imprecise.
Function model - Cyclic stream
Function model "Cyclic stream" was implemented later. From the application's point of view, there is no difference
between function models "Stream" and "Cyclic stream". Internally, however, the cyclic I/O registers are used to
ensure that communication follows deterministic timing.

Information:
• In order to use function models "Stream" and "Cyclic stream", you must be using B&R con-

trollers of type "SG4".
• These function models can only be used in X2X Link and POWERLINK networks.

Read WriteRegister Name Data type
Cyclic Acyclic Cyclic Acyclic

Module – Configuration
- AsynSize -

Status messages – Configuration
50 CfO_RxStateIgnoreMask UINT ●

6273 CfO_ErrorID0007 USINT ●
Status messages – Communication

ErrorByte USINT
StartBitError Bit 0
StopBitError Bit 1
ParityError Bit 2

6145

RXoverrun Bit 3

●

ErrorQuitByte USINT
QuitStartBitError Bit 0
QuitStopBitError Bit 1
QuitParityError Bit 2

6209

QuitRXoverrun Bit 3

●

Data sheet V 3.31 5

X20(c)CS1030

11.3 Function model 254 - Flatstream

Flatstream provides independent communication between an X2X Link master and the module. This interface was
implemented as a separate function model for the module. Serial information is transferred via cyclic input and
output registers. The sequence and control bytes are used to control the data stream (see "Flatstream communi-
cation" on page 15).
When using function model Flatstream, the user can choose whether to use library "AsFltGen" in AS for implemen-
tation or to adapt Flatstream handling directly to the individual requirements of the application.

Read WriteRegister Name Data type
Cyclic Acyclic Cyclic Acyclic

Serial interface - Configuration
1 phyMode USINT ●

12 phyBaud UDINT ●
3 phyData USINT ●
5 phyStop USINT ●
7 phyParity USINT ●

Handshake – Configuration
66 rxlLock UINT ●
70 rxlUnlock UINT ●
34 hssXOn UINT ●
38 hssXOff UINT ●
42 hssPeriod UINT ●

Frame – Configuration
74 rxCto UINT ●

106 txCto UINT ●
78 rxEomSize UINT ●
110 txEomSize UINT ●

N * 4 + 82 rxEomCharN (index N = 0 to 3) UINT ●
N * 4 + 114 txEomCharN (index N = 0 to 3) UINT ●

Status messages – Configuration
50 CfO_RxStateIgnoreMask UINT ●

6273 CfO_ErrorID0007 USINT ●
Status messages – Communication

ErrorByte USINT
StartBitError Bit 0
StopBitError Bit 1
ParityError Bit 2

6145

RXoverrun Bit 3

●

ErrorQuitByte USINT
QuitStartBitError Bit 0
QuitStopBitError Bit 1
QuitParityError Bit 2

6209

QuitRXoverrun Bit 3

●

Flatstream
225 OutputMTU USINT ●
227 InputMTU USINT ●
229 Mode USINT ●
231 Forward USINT ●
238 ForwardDelay UINT ●
128 InputSequence USINT ●

N + 128 RxByteN (index N = 1 to 27) USINT ●
160 OutputSequence USINT ●

N + 160 TxByteN (index N = 1 to 27) USINT ●

6 Data sheet V 3.31

X20(c)CS1030

11.4 Function model 254 - Bus controller

Function model "Bus controller" is a reduced form of function model "Flatstream". Instead of up to 27 Tx / Rx bytes,
a maximum of 7 Tx / Rx bytes can be used.

Read WriteRegister Offset1) Name Data type
Cyclic Non-cyclic Cyclic Non-cyclic

Serial interface - Configuration
257 - phyMode_CANIO USINT ●
268 - phyBaud_CANIO UDINT ●
259 - phyData_CANIO USINT ●
261 - phyStop_CANIO USINT ●
263 - phyParity_CANIO USINT ●

Handshake – Configuration
322 - rxlLock_CANIO UINT ●
326 - rxlUnlock_CANIO UINT ●
290 - hssXOn_CANIO UINT ●
294 - hssXOff_CANIO UINT ●
298 - hssPeriod_CANIO UINT ●

Frame – Configuration
330 - rxCto_CANIO UINT ●
362 - txCto_CANIO UINT ●
334 - rxEomSize_CANIO UINT ●
366 - txEomSize_CANIO UINT ●

N*4 + 338 - rxEomCharN (index N = 0 to 3) UINT ●
N*4 + 370 - txEomCharN (index N = 0 to 3) UINT ●

Status messages – Configuration
306 - CfO_RxStateIgnoreMask_CANIO UINT ●

6273 - CfO_ErrorID0007 USINT ●
Status messages – Communication

ErrorByte USINT
StartBitError Bit 0
StopBitError Bit 1
ParityError Bit 2

6145 -

RXoverrun Bit 3

●

ErrorQuitByte USINT
QuitStartBitError Bit 0
QuitStopBitError Bit 1
QuitParityError Bit 2

6209 -

QuitRXoverrun Bit 3

●

FlatStream
225 - OutputMTU USINT ●
227 - InputMTU USINT ●
229 - Mode USINT ●
231 - Forward USINT ●
238 - ForwardDelay UINT ●
128 0 InputSequence USINT ●

N + 128 N RxByteN (Index N = 1 to 7) USINT ●
160 0 OutputSequence USINT ●

N + 160 N TxByteN (Index N = 1 to 7) USINT ●

1) The offset specifies the position of the register within the CAN object.

11.4.1 Using the module on the bus controller

Function model 254 "Bus controller" is used by default only by non-configurable bus controllers. All other bus
controllers can use other registers and functions depending on the fieldbus used.
For detailed information, see section "Additional information - Using I/O modules on the bus controller" in the X20
user's manual (version 3.50 or later).

11.4.2 CAN I/O bus controller

The module occupies 1 analog logical slot on CAN I/O.

Data sheet V 3.31 7

X20(c)CS1030

11.5 Serial interface - Configuration

The user has to configure 5 registers to operate the serial interface.

11.5.1 Mode

Name:
phyMode
phyMode_CANIO
This register is used to determine the current operating mode of the interface.
Enabling the interface is only permitted after complete configuration of the other registers. If parameters need to
be changed, the interface must first be disabled.
Data type Value Description

0 Interface disabled (bus controller default setting)
4 RS422 interface enabled1)

5 RS422 interface enables as a bus2)

6 RS485 interface enabled with echo

USINT

7 RS485 interface enabled without echo

1) Connection between 2 stations
2) Connections between multiple stations possible. Transmit lines connected as with RS485 TriState.

11.5.2 Baud rate

Name:
phyBaud
phyBaud_CANIO
This register sets the baud rate of the interface in bit/s.
Data type Value Function

1200 1.2 kbaud
2400 2.4 kbaud
4800 4.8 kbaud
9600 9.6 kbaud

19200 19.2 kbaud
38400 38.4 kbaud
57600 57.6 kbaud (bus controller default setting)

UDINT

115200 115.2 kbaud

11.5.3 Number of data bits

Name:
phyData
phyData_CANIO
This register is used to specify the number of bits to be transferred for each character.
Data type Value Description

7 7 data bitsUSINT
8 8 data bits (bus controller default setting)

11.5.4 Number of stop bits

Name:
phyStop
phyStop_CANIO
This register is used to define the number of stop bits.
Data type Values Explanation

2 1 stop bit (bus controller default setting)USINT
4 2 stop bits

8 Data sheet V 3.31

X20(c)CS1030

11.5.5 Type of parity check

Name:
phyParity
phyParity_CANIO
This register is used to define the parity check type. Possible values are ASCII coded.
Data type Value Description

48 "0" - (low) bit is always 0
49 "1" - (high) bit is always 1
69 "E" - (even) even parity (bus controller default setting)
78 "N" - (no) no bit

USINT

79 "O" - (odd) odd parity

11.6 Handshake - Configuration

In order to guarantee that serial communication runs smoothly, the size of the receive buffer in the module must
be known. In addition, the user can configure a software or hardware handshake algorithm.

11.6.1 Locking the receive buffer

Name:
rxlLock
rxlLock_CANIO
This register is used to configure the upper threshold of the receive buffer.
The two registers "Lock" and "Unlock" can be used for "flow control" monitoring of the communication. If the amount
of data from the module input exceeds the value of register "Lock", flow control switches to state "Passive". To
return to state "Active" or "Ready", the amount of data in the receive buffer must fall below the default value of
register "Unlock".

Information:
These registers simulate the behavior of a Schmitt trigger, so the value of register "Lock" must be
greater than the value of register "Unlock".

Data type Value Description
UINT 0 to 4095 Upper limit of receive buffer.

Bus controller default setting: 1024

11.6.2 Unlocking the receive buffer

Name:
rxlUnlock
rxlUnlock_CANIO
This register is used to configure the lower threshold of the receive buffer.
The two registers "Lock" and "Unlock" can be used for "flow control" monitoring of the communication. If the amount
of data from the module input exceeds the value of register "Lock", flow control switches to state "Passive". To
return to state "Active" or "Ready", the amount of data in the receive buffer must fall below the default value of
register "Unlock".

Information:
These registers simulate the behavior of a Schmitt trigger, so the value of register "Lock" must be
greater than the value of register "Unlock".

Data type Value Description
UINT 0 to 4095 Lower limit of receive buffer.

Bus controller default setting: 512

Data sheet V 3.31 9

X20(c)CS1030

11.6.3 Turn on software handshake

Name:
hssXOn
hssXOn_CANIO
This register can be used to configure the XOn character. The value 17 is the default, but any other value can
also be configured.
The two registers "Xon" and "Xoff" can be used to initiate a software handshake for flow control. A valid ASCII
character must be configured in both registers for this.
Data type Value Description

0 to 255 XOn ASCII characterUINT
65535 No software handshake (bus controller default setting)

11.6.4 Turn off software handshake

Name:
hssXOff
hssXOff_CANIO
This register can be used to configure the XOff character. The value 19 is the default, but any other value can
also be configured.
The two registers "Xon" and "Xoff" can be used to initiate a software handshake for flow control. A valid ASCII
character must be configured in both registers for this.
Data type Value Description

0 to 255 XOff ASCII characterUINT
65535 No software handshake (bus controller default setting)

11.6.5 Handshake repetition

Name:
hssPeriod
hssPeriod_CANIO
When using a software handshake, some applications require periodic repetition of the current status. The repeat
time can be defined in this register in ms for this purpose.
Data type Value Description

0 Automatic status repeat disabledUINT
500 to 10000 Retry interval in ms.

Bus controller default setting: 5000

10 Data sheet V 3.31

X20(c)CS1030

11.7 Frame - Configuration

Different message termination codes can be specified in order to correctly create transmitted Tx frames and cor-
rectly interpret received Rx frames.

11.7.1 Terminating when a receive timeout occurs

Name:
rxCto
rxCto_CANIO
This register is used to set the duration until a receive timeout is triggered.
The message is considered to be terminated when nothing is transfered for the specified duration.
The time is specified here in characters to ensure that it is independent of the transfer rate. The number of char-
acters is then multiplied by the time needed to transfer a character.
Data type Value Description

0 Function disabledUINT
1 to 65535 Receive timeout in characters.

Bus controller default setting: 4

11.7.2 Terminating when a transmit timeout occurs

Name:
txCto
txCto_CANIO
This register is used to set the duration until a transmit timeout is triggered.
The message is considered to be terminated when nothing is transfered for the specified duration.
The time is specified here in characters to ensure that it is independent of the transfer rate. The number of char-
acters is then multiplied by the time needed to transfer a character.
Data type Value Description

0 Function disabledUINT
1 to 65535 Transmit timeout in characters.

Bus controller default setting: 5

11.7.3 Maximum number of bytes received

Name:
rxEomSize
rxEomSize_CANIO
These registers configure the maximum number of bytes in the receive frame.
The message is considered to be ended as soon as a frame with the specified size in bytes is transferred. The
longest possible frame length is the size of the 4096-byte receive buffer. Larger frames cause the Receive Overrun
error.
Data type Value Description

0 Function disabledUINT
1 to 4096 Configurable receive frame length in characters.

Bus controller default setting: 256

11.7.4 Maximum number of bytes transmitted

Name:
txEomSize
txEomSize_CANIO
These registers configure the maximum number of bytes in the transmit frame.
The message is considered to be ended as soon as a frame with the specified size in bytes is transferred. The
longest possible frame length is the size of the 4096-byte transmit buffer. The configured transmit timeout is main-
tained after the frame has been sent.
Data type Value Description

0 Function disabledUINT
1 to 4096 Configurable transmit frame length in characters.

Bus controller default setting: 4096

Data sheet V 3.31 11

X20(c)CS1030

11.7.5 Define receive terminator

Name:
rxEomChar0 to rxEomChar3
rxEomChar0_CANIO to rxEomChar3_CANIO
It is possible to configure a receive terminator for all registers.
The message is considered to be terminated as soon as one of the defined characters is transferred.
Data type Value Description

0 to 255 Frame terminator (ASCII code)UINT
65535 Function disabled (bus controller default setting)

11.7.6 Define transmit terminator

Name:
txEomChar0 to txEomChar3
txEomChar0_CANIO to txEomChar3_CANIO
It is possible to configure a transmit terminator for all registers.
The message is considered to be terminated as soon as one of the defined characters is transferred.
Data type Value Description

0 to 255 Frame terminator (ASCII code)UINT
65535 Function disabled (bus controller default setting)

12 Data sheet V 3.31

X20(c)CS1030

11.8 Status messages - Configuration

The status messages provide the user with information about the current situation in the downstream serial network.

11.8.1 Error detection setting

Name:
CfO_RxStateIgnoreMask
CfO_RxStateIgnoreMask_CANIO
This register has a direct effect on UART operation. Error detection in general can be disabled using the low byte.
If error detection is not disabled, the high byte can be used to specify that a detected error should be interpreted
as the end of the message.
Data type Values Bus controller default setting
UINT See bit structure. 0

Bit structure:
Bit Name Value Information

0 - 3 Reserved 0
0 Detect invalid start bit (bus controller default setting)4 StartBitError
1 Ignore
0 Detect invalid stop bit (bus controller default setting)5 StopBitError
1 Ignore
0 Detect invalid parity bit (bus controller default setting)6 ParityError
1 Ignore
0 Detect overflow in receive direction (bus controller default set-

ting)
7 RXoverrun

1 Ignore
8 - 11 Reserved 0

0 Indicate error in module only (bus controller default setting)12 StartBitError corresponds to the end of the frame (if bit 4 = 0)
1 Also signal end of frame
0 Indicate error in module only (bus controller default setting)13 StopBitError corresponds to the end of the frame (if bit 5 = 0)
1 Also signal end of frame
0 Indicate error in module only (bus controller default setting)14 ParityError corresponds to the end of the frame (if bit 6 = 0)
1 Also signal end of frame
0 Indicate error in module only (bus controller default setting)15 RXoverrun corresponds to the end of the frame (if bit 7 = 0)
1 Also signal end of frame

11.8.2 Forward error to the application

Name:
CfO_ErrorID0007
This register sets which error messages are forwarded to the application.
Data type Values Bus controller default setting
USINT See the bit structure. 0

Bit structure:
Bit Name Information

0 Ignore (bus controller default setting)0 StartBitError
1 Indicating a faulty start bit
0 Ignore (bus controller default setting)1 StopBitError
1 Indicating a faulty stop bit
0 Ignore (bus controller default setting)2 ParityError
1 Indicating a faulty parity bit
0 Ignore (bus controller default setting)3 RXoverrun
1 Indicating an overflow in the receive direction

4 - 7 Reserved 0

Data sheet V 3.31 13

X20(c)CS1030

11.9 Status messages - Communication

After configuration is completed, up to four status messages can be evaluated in the application.

11.9.1 Error message status bits

Name:
StartBitError
StopBitError
ParityError
RXoverrun
This register transfers the individual bits that indicate an error. If a error occurs, the corresponding bit is set and
maintained until it is acknowledged.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 No error0 StartBitError
1 Start bit error occurred1)

0 No error1 StopBitError
1 Stop bit error occurred1)

0 No error2 ParityError
1 Parity bit error occurred1)

0 No error3 RXoverrun
1 Receive buffer overflow occurred2)

4 - 7 Reserved 0

1) This error can result from things such as mismatched interface configurations or problems with the wiring.
2) This data point reports a receive buffer overrun. The buffer capacity on the module is exhausted and all subsequent data arriving at the interface is lost. An

overrun always means that the data received on the module is not read fast enough by the higher-level system.
The solution here is to optimize the cycle times of all transfer routes and task classes involved and utilize the available handshake options.

11.9.2 Acknowledging the status bits

Name:
QuitStartBitError
QuitStopBitError
QuitParityError
QuitRXoverrun
This register is used to transfer the individual bits that acknowledge an indicated error state. After one of the bits
has been set, it can be reset using the corresponding acknowledgment bit.
If the error is still actively pending, the error status bit is not deleted. The acknowledgment bit can only be reset
if the error status bit is no longer set.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 No acknowledgment0 QuitStartBitError
1 Acknowledge start bit error
0 No acknowledgment1 QuitStopBitError
1 Acknowledge stop bit error
0 No acknowledgment2 QuitParityError
1 Acknowledge parity bit error
0 No acknowledgment3 QuitRXoverrun
1 Acknowledge receive buffer overflow error

4 - 7 Reserved 0

14 Data sheet V 3.31

X20(c)CS1030

11.10 Flatstream communication

11.10.1 Introduction

B&R offers an additional communication method for some modules. "Flatstream" was designed for X2X and
POWERLINK networks and allows data transmission to be adapted to individual demands. Although this method
is not 100% real-time capable, it still allows data transfer to be handled more efficiently than with standard cyclic
polling.

X2X

Flatstream

Cyclic
communication

Cyclic
communication

Field-device
language

B&R field device

B&R field device

B&R field device

B&R module

B&R module

B&R modulePLC or
bus controller

PLC or
bus controller

PLC or
bus controller

B&R CPU

B&R CPU

B&R CPU
Device command

X2X-compatible
device command As bridge

Cache values

Cyclic call
of cache values

Acyclic call
of cache values

Cyclic call
using I/O mapping

Acyclic call
using

library functions

Cache values

Figure 1: 3 types of communication

Flatstream extends cyclic and acyclic data queries. With Flatstream communication, the module acts as a bridge.
The module is used to pass CPU queries directly on to the field device.

Data sheet V 3.31 15

X20(c)CS1030

11.10.2 Message, segment, sequence, MTU

The physical properties of the bus system limit the amount of data that can be transmitted during one bus cycle.
With Flatstream communication, all messages are viewed as part of a continuous data stream. Long data streams
must be broken down into several fragments that are sent one after the other. To understand how the receiver puts
these fragments back together to get the original information, it is important to understand the difference between
a message, a segment, a sequence and an MTU.
Message
A message refers to information exchanged between 2 communicating partner stations. The length of a message
is not restricted by the Flatstream communication method. Nevertheless, module-specific limitations must be con-
sidered.
Segment (logical division of a message):
A segment has a finite size and can be understood as a section of a message. The number of segments per
message is arbitrary. So that the recipient can correctly reassemble the transferred segments, each segment is
preceded by a byte with additional information. This control byte contains information such as the length of a
segment and whether the approaching segment completes the message. This makes it possible for the receiving
station to interpret the incoming data stream correctly.
Sequence (how a segment must be arranged physically):
The maximum size of a sequence corresponds to the number of enabled Rx or Tx bytes (later: "MTU"). The
transmitting station splits the transmit array into valid sequences. These sequences are then written successively
to the MTU and transferred to the receiving station where they are put back together again. The receiver stores
the incoming sequences in a receive array, obtaining an image of the data stream in the process.
With Flatstream communication, the number of sequences sent are counted. Successfully transferred sequences
must be acknowledged by the receiving station to ensure the integrity of the transfer.
MTU (Maximum Transmission Unit) - Physical transport:
MTU refers to the enabled USINT registers used with Flatstream. These registers can accept at least one sequence
and transfer it to the receiving station. A separate MTU is defined for each direction of communication. OutputMTU
defines the number of Flatstream Tx bytes, and InputMTU specifies the number of Flatstream Rx bytes. The MTUs
are transported cyclically via the X2X Link network, increasing the load with each additional enabled USINT register.
Properties
Flatstream messages are not transferred cyclically or in 100% real time. Many bus cycles may be needed to transfer
a particular message. Although the Rx and Tx registers are exchanged between the transmitter and the receiver
cyclically, they are only processed further if explicitly accepted by register "InputSequence" or "OutputSequence".
Behavior in the event of an error (brief summary)
The protocol for X2X and POWERLINK networks specifies that the last valid values should be retained when
disturbances occur. With conventional communication (cyclic/acyclic data queries), this type of error can generally
be ignored.
In order for communication to also take place without errors using Flatstream, all of the sequences issued by the
receiver must be acknowledged. If Forward functionality is not used, then subsequent communication is delayed
for the length of the disturbance.
If Forward functionality is being used, the receiving station receives a transmission counter that is increment-
ed twice. The receiver stops, i.e. it no longer returns any acknowledgments. The transmitting station uses Se-
quenceAck to determine that the transmission was faulty and that all affected sequences must be repeated.

16 Data sheet V 3.31

X20(c)CS1030

11.10.3 The Flatstream principle

Requirement
Before Flatstream can be used, the respective communication direction must be synchronized, i.e. both commu-
nication partners cyclically query the sequence counter on the opposite station. This checks to see if there is new
data that should be accepted.
Communication
If a communication partner wants to transmit a message to its opposite station, it should first create a transmit
array that corresponds to Flatstream conventions. This allows the Flatstream data to be organized very efficiently
without having to block other important resources.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

TxBytes

Transmit array
Type: USINT

OutputMTU
Type: USINT

PLC / Bus controller

The transmit buffer
of the module is
adapted cyclically
to OutputMTU
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*RxBytes

Module-internal
receive array
Type: USINT

Module-internal
transmit array
Type: USINT

Module-internal
transmit buffer
Type: USINT

Module-internal
receive buffer
Type: USINT

Module

Cycl.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

RxBytes

Receive array
Type: USINT

InputMTU
Type: USINT

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*TxBytesCycl.

CPU fills
OutputMTU
with the next
sequence of the
transmit array

If OutputMTU
is enabled:

Module increases the
InputSequence counter

If permitted:
Module fills the internal
transmit buffer with the
next sequence of the
transmit arrayInputMTU must be

added at the end of the
receive array
(increase InputSequenceAck
to end correctly)

If counter
InputSequence
is increased:

Module adds the transmit buffer
to the internal array

If successful:
InputSequenceAck is
adapted to the
transmit counter

If counter OutputSequence
is increased:

InputMTU is
adapted cyclically to the
receive buffer
via X2X

Figure 2: Flatstream communication

Procedure
The first thing that happens is that the message is broken into valid segments of up to 63 bytes, and the corre-
sponding control bytes are created. The data is formed into a data stream made up of one control bytes per asso-
ciated segment. This data stream can be written to the transmit array. The maximum size of each array element
matches that of the enabled MTU so that one element corresponds to one sequence.
If the array has been completely created, the transmitter checks whether the MTU is permitted to be refilled. It then
copies the first element of the array or the first sequence to the Tx byte registers. The MTU is transported to the
receiver station via X2X Link and stored in the corresponding Rx byte registers. To signal that the data should be
accepted by the receiver, the transmitter increases its SequenceCounter.
If the communication direction is synchronized, the opposite station detects the incremented SequenceCounter.
The current sequence is appended to the receive array and acknowledged by SequenceAck. This acknowledgment
signals to the transmitter that the MTU can now be refilled.
If the transfer is successful, the data in the receive array will correspond 100% to the data in the transmit array.
During the transfer, the receiving station must detect and evaluate the incoming control bytes. A separate receive
array should be created for each message. This allows the receiver to immediately begin further processing of
messages that are completely transferred.

Data sheet V 3.31 17

X20(c)CS1030

11.10.4 Registers for Flatstream mode

5 registers are available for configuring Flatstream. The default configuration can be used to transmit small amounts
of data relatively easily.

Information:
The CPU communicates directly with the field device via registers "OutputSequence" and "InputSe-
quence" as well as the enabled Tx and Rx bytes. For this reason, the user needs to have sufficient
knowledge of the communication protocol being used on the field device.

11.10.4.1 Flatstream configuration

To use Flatstream, the program sequence must first be expanded. The cycle time of the Flatstream routines must
be set to a multiple of the bus cycle. Other program routines should be implemented in Cyclic #1 to ensure data
consistency.
At the absolute minimum, registers "InputMTU" and "OutputMTU" must be set. All other registers are filled in with
default values at the beginning and can be used immediately. These registers are used for additional options, e.g.
to transfer data in a more compact way or to increase the efficiency of the general procedure.
The Forward registers extend the functionality of the Flatstream protocol. This functionality is useful for substan-
tially increasing the Flatstream data rate, but it also requires quite a bit of extra work when creating the program
sequence.

11.10.4.1.1 Number of enabled Tx and Rx bytes

Name:
OutputMTU
InputMTU
These registers define the number of enabled Tx or Rx bytes and thus also the maximum size of a sequence. The
user must consider that the more bytes made available also means a higher load on the bus system.

Information:
In the rest of this description, the names "OutputMTU" and "InputMTU" do not refer to the registers
explained here. Instead, they are used as synonyms for the currently enabled Tx or Rx bytes.

Data type Values
USINT See the module-specific register overview (theoretically: 3 to 27).

18 Data sheet V 3.31

X20(c)CS1030

11.10.4.2 Flatstream operation

When using Flatstream, the communication direction is very important. For transmitting data to a module (output
direction), Tx bytes are used. For receiving data from a module (input direction), Rx bytes are used.
Registers "OutputSequence" and "InputSequence" are used to control and ensure that communication is taking
place properly, i.e. the transmitter issues the directive that the data should be accepted and the receiver acknowl-
edges that a sequence has been transferred successfully.

11.10.4.2.1 Format of input and output bytes

Name:
"Format of Flatstream" in Automation Studio
On some modules, this function can be used to set how the Flatstream input and output bytes (Tx or Rx bytes)
are transferred.

• Packed: Data is transferred as an array.
• Byte-by-byte: Data is transferred as individual bytes.

11.10.4.2.2 Transport of payload data and control bytes

Name:
TxByte1 to TxByteN
RxByte1 to RxByteN
(The value the number N is different depending on the bus controller model used.)
The Tx and Rx bytes are cyclic registers used to transport the payload data and the necessary control bytes.
The number of active Tx and Rx bytes is taken from the configuration of registers "OutputMTU" and "InputMTU",
respectively.
In the user program, only the Tx and Rx bytes from the CPU can be used. The corresponding counterparts are
located in the module and are not accessible to the user. For this reason, the names were chosen from the point
of view of the CPU.

• "T" - "Transmit" →CPU transmits data to the module.
• "R" - "Receive" →CPU receives data from the module.

Data type Values
USINT 0 to 255

11.10.4.2.3 Control bytes

In addition to the payload data, the Tx and Rx bytes also transfer the necessary control bytes. These control bytes
contain additional information about the data stream so that the receiver can reconstruct the original message from
the transferred segments.
Bit structure of a control byte

Bit Name Value Information
0 - 5 SegmentLength 0 - 63 Size of the subsequent segment in bytes (default: Max. MTU size - 1)

0 Next control byte at the beginning of the next MTU6 nextCBPos
1 Next control byte directly after the end of the current segment
0 Message continues after the subsequent segment7 MessageEndBit
1 Message ended by the subsequent segment

SegmentLength
The segment length lets the receiver know the length of the coming segment. If the set segment length is insufficient
for a message, then the information must be distributed over several segments. In these cases, the actual end of
the message is detected using bit 7 (control byte).

Information:
The control byte is not included in the calculation to determine the segment length. The segment length
is only derived from the bytes of payload data.

nextCBPos
This bit indicates the position where the next control byte is expected. This information is especially important when
using option "MultiSegmentMTU".
When using Flatstream communication with multi-segment MTUs, the next control byte is no longer expected in
the first Rx byte of the subsequent MTU, but transferred directly after the current segment.
Data sheet V 3.31 19

X20(c)CS1030

MessageEndBit
"MessageEndBit" is set if the subsequent segment completes a message. The message has then been completely
transferred and is ready for further processing.

Information:
In the output direction, this bit must also be set if one individual segment is enough to hold the entire
message. The module will only process a message internally if this identifier is detected.
The size of the message being transferred can be calculated by adding all of the message's segment
lengths together.

Flatstream formula for calculating message length:

CB Control byteMessage [bytes] = Segment lengths (all CBs without ME) + Segment length (of the first CB with
ME) ME MessageEndBit

11.10.4.2.4 Communication status of the CPU

Name:
OutputSequence
Register "OutputSequence" contains information about the communication status of the CPU. It is written by the
CPU and read by the module.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 - 2 OutputSequenceCounter 0 - 7 Counter for the sequences issued in the output direction
0 Output direction disabled3 OutputSyncBit
1 Output direction enabled

4 - 6 InputSequenceAck 0 - 7 Mirrors InputSequenceCounter
0 Input direction not ready (disabled)7 InputSyncAck
1 Input direction ready (enabled)

OutputSequenceCounter
The OutputSequenceCounter is a continuous counter of sequences that have been issued by the CPU. The CPU
uses OutputSequenceCounter to direct the module to accept a sequence (the output direction must be synchro-
nized when this happens).
OutputSyncBit
The CPU uses OutputSyncBit to attempt to synchronize the output channel.
InputSequenceAck
InputSequenceAck is used for acknowledgment. The value of InputSequenceCounter is mirrored if the CPU has
received a sequence successfully.
InputSyncAck
The InputSyncAck bit acknowledges the synchronization of the input channel for the module. This indicates that
the CPU is ready to receive data.

20 Data sheet V 3.31

X20(c)CS1030

11.10.4.2.5 Communication status of the module

Name:
InputSequence
Register "InputSequence" contains information about the communication status of the module. It is written by the
module and should only be read by the CPU.
Data type Values
USINT See the bit structure.

Bit structure:
Bit Name Value Information

0 - 2 InputSequenceCounter 0 - 7 Counter for sequences issued in the input direction
0 Not ready (disabled)3 InputSyncBit
1 Ready (enabled)

4 - 6 OutputSequenceAck 0 - 7 Mirrors OutputSequenceCounter
0 Not ready (disabled)7 OutputSyncAck
1 Ready (enabled)

InputSequenceCounter
The InputSequenceCounter is a continuous counter of sequences that have been issued by the module. The mod-
ule uses InputSequenceCounter to direct the CPU to accept a sequence (the input direction must be synchronized
when this happens).
InputSyncBit
The module uses InputSyncBit to attempt to synchronize the input channel.
OutputSequenceAck
OutputSequenceAck is used for acknowledgment. The value of OutputSequenceCounter is mirrored if the module
has received a sequence successfully.
OutputSyncAck
The OutputSyncAck bit acknowledges the synchronization of the output channel for the CPU. This indicates that
the module is ready to receive data.

Data sheet V 3.31 21

X20(c)CS1030

11.10.4.2.6 Relationship between OutputSequence and InputSequence

0 - 2

3

OutputSequenceCounter

OutputSyncBit

4 - 6

7

InputSequenceAck

InputSyncAck

0 - 2

3

InputSequenceCounter

InputSyncBit

4 - 6

7

OutputSequenceAck

OutputSyncAck

Output sequence

Communication status of the CPU

Input sequence

Communication status of the module

Intersecting

Handshakes

Figure 3: Relationship between OutputSequence and InputSequence

Registers "OutputSequence" and "InputSequence" are logically composed of 2 half-bytes. The low part signals
to the opposite station whether a channel should be opened or if data should be accepted. The high part is to
acknowledge that the requested action was carried out.
SyncBit and SyncAck
If SyncBit and SyncAck are set in one communication direction, then the channel is considered "synchronized", i.e.
it is possible to send messages in this direction. The status bit of the opposite station must be checked cyclically.
If SyncAck has been reset, then SyncBit on that station must be adjusted. Before new data can be transferred,
the channel must be resynchronized.
SequenceCounter and SequenceAck
The communication partners cyclically check whether the low nibble on the opposite station changes. When one
of the communication partners finishes writing a new sequence to the MTU, it increments its SequenceCounter.
The current sequence is then transmitted to the receiver, which acknowledges its receipt with SequenceAck. In
this way, a "handshake" is initiated.

Information:
If communication is interrupted, segments from the unfinished message are discarded. All messages
that were transferred completely are processed.

22 Data sheet V 3.31

X20(c)CS1030

11.10.4.3 Synchronization

During synchronization, a communication channel is opened. It is important to make sure that a module is present
and that the current value of SequenceCounter is stored on the station receiving the message.
Flatstream can handle full-duplex communication. This means that both channels / communication directions can
be handled separately. They must be synchronized independently so that simplex communication can theoretically
be carried out as well.

Synchronization in the output direction (CPU as the transmitter):

The corresponding synchronization bits (OutputSyncBit and OutputSyncAck) are reset. Because of this, Flatstream
cannot be used at this point in time to transfer messages from the CPU to the module.
Algorithm
1) The CPU must write 000 to OutputSequenceCounter and reset OutputSyncBit.
The CPU must cyclically query the high nibble of register "InputSequence" (checks for 000 in OutputSequenceAck and 0 in OutputSyncAck).
The module does not accept the current contents of InputMTU since the channel is not yet synchronized.
The module matches OutputSequenceAck and OutputSyncAck to the values of OutputSequenceCounter and OutputSyncBit.
2) If the CPU registers the expected values in OutputSequenceAck and OutputSyncAck, it is permitted to increment OutputSequenceCounter.
The CPU continues cyclically querying the high nibble of register "OutputSequence" (checks for 001 in OutputSequenceAck and 0 in InputSyncAck).
The module does not accept the current contents of InputMTU since the channel is not yet synchronized.
The module matches OutputSequenceAck and OutputSyncAck to the values of OutputSequenceCounter and OutputSyncBit.
3) If the CPU registers the expected values in OutputSequenceAck and OutputSyncAck, it is permitted to increment OutputSequenceCounter.
The CPU continues cyclically querying the high nibble of register "OutputSequence" (checks for 001 in OutputSequenceAck and 1 in InputSyncAck).

Note:
Theoretically, data can be transferred from this point forward. However, it is still recommended to wait until the output direction is completely synchronized be-
fore transferring data.
The module sets OutputSyncAck.
The output direction is synchronized, and the CPU can transmit data to the module.

Synchronization in the input direction (CPU as the receiver):

The corresponding synchronization bits (InputSyncBit and InputSyncAck) are reset. Because of this, Flatstream
cannot be used at this point in time to transfer messages from the module to the CPU.
Algorithm
The module writes 000 to InputSequenceCounter and resets InputSyncBit.
The module monitors the high nibble of register "OutputSequence" and expects 000 in InputSequenceAck and 0 in InputSyncAck.
1) The CPU is not permitted to accept the current contents of InputMTU since the channel is not yet synchronized.
The CPU has to match InputSequenceAck and InputSyncAck to the values of InputSequenceCounter and InputSyncBit.
If the module registers the expected values in InputSequenceAck and InputSyncAck, it increments InputSequenceCounter.
The module monitors the high nibble of register "OutputSequence" and expects 001 in InputSequenceAck and 0 in InputSyncAck.
2) The CPU is not permitted to accept the current contents of InputMTU since the channel is not yet synchronized.
The CPU has to match InputSequenceAck and InputSyncAck to the values of InputSequenceCounter and InputSyncBit.
If the module registers the expected values in InputSequenceAck and InputSyncAck, it sets InputSyncBit.
The module monitors the high nibble of register "OutputSequence" and expects 1 in InputSyncAck.
3) The CPU is permitted to set InputSyncAck.

Note:
Theoretically, data could already be transferred in this cycle.
If InputSyncBit is set and InputSequenceCounter has been increased by 1, the values in the enabled Rx bytes must be accepted and acknowledged (see also
"Communication in the input direction").
The input direction is synchronized, and the module can transmit data to the CPU.

Data sheet V 3.31 23

X20(c)CS1030

11.10.4.4 Transmitting and receiving

If a channel is synchronized, then the opposite station is ready to receive messages from the transmitter. Before
the transmitter can send data, it needs to first create a transmit array in order to meet Flatstream requirements.
The transmitting station must also generate a control byte for each segment created. This control byte contains
information about how the subsequent part of the data being transferred should be processed. The position of the
next control byte in the data stream can vary. For this reason, it must be clearly defined at all times when a new
control byte is being transmitted. The first control byte is always in the first byte of the first sequence. All subsequent
positions are determined recursively.
Flatstream formula for calculating the position of the next control byte:

Position (of the next control byte) = Current position + 1 + Segment length

Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7
bytes. The rest of the configuration corresponds to the default settings.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

B1 B2

A2 A3 A4

C2

A1

A7

A5 A6

C3

D1 D2 D3 D4 D5 D6

D7 D8

-

- -

-

C4

-

-

C5

-

C1

- -

- -

-

-

- -C0 -

-

Default

-

D9

D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 4: Transmit/Receive array (default)

24 Data sheet V 3.31

X20(c)CS1030

First, the messages must be split into segments. In the default configuration, it is important to ensure that each
sequence can hold an entire segment, including the associated control byte. The sequence is limited to the size of
the enable MTU. In other words, a segment must be at least 1 byte smaller than the MTU.
MTU = 7 bytes → Max. segment length = 6 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 6 bytes of data
➯ Second segment = Control byte + 1 data byte

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 6 bytes of data
➯ Second segment = Control byte + 3 data bytes

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C0 (control byte 0) C1 (control byte 1) C2 (control byte 2)
- SegmentLength (0) = 0 - SegmentLength (6) = 6 - SegmentLength (1) = 1
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (0) = 0 - MessageEndBit (0) = 0 - MessageEndBit (1) = 128
Control byte Σ 0 Control byte Σ 6 Control byte Σ 129

Table 3: Flatstream determination of the control bytes for the default configuration example (part 1)

C3 (control byte 3) C4 (control byte 4) C5 (control byte 5)
- SegmentLength (2) = 2 - SegmentLength (6) = 6 - SegmentLength (3) = 3
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (0) = 0 - MessageEndBit (1) = 128
Control byte Σ 130 Control byte Σ 6 Control byte Σ 131

Table 4: Flatstream determination of the control bytes for the default configuration example (part 2)

Data sheet V 3.31 25

X20(c)CS1030

11.10.4.5 Transmitting data to a module (output)

When transmitting data, the transmit array must be generated in the application program. Sequences are then
transferred one by one using Flatstream and received by the module.

Information:
Although all B&R modules with Flatstream communication always support the most compact trans-
fers in the output direction, it is recommended to use the same design for the transfer arrays in both
communication directions.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

TxBytes

CPU fills
OutputMTU with
the next
sequence of the
transmit array

If OutputMTU
is enabled:

Transmit array
Type: USINT

OutputMTU
Type: USINT

PLC / Bus controller

The transmit buffer
of the module is
adapted cyclically
to OutputMTU
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*RxBytes

Module adds the transmit buffer
to the internal array

If successful:
InputSequenceAck is
adapted to the
transmit counter

If counter OutputSequence
is increased:

Module-internal
receive array
Type: USINT

Module-internal
receive buffer
Type: USINT

Module

Cycl.

Figure 5: Flatstream communication (output)

Message smaller than OutputMTU
The length of the message is initially smaller than OutputMTU. In this case, one sequence would be sufficient to
transfer the entire message and the necessary control byte.
Algorithm
Cyclic status query:
- The module monitors OutputSequenceCounter.
0) Cyclic checks:
- The CPU must check OutputSyncAck.
→ If OutputSyncAck = 0: Reset OutputSyncBit and resynchronize the channel.
- The CPU must check whether OutputMTU is enabled.
→ If OutputSequenceCounter > InputSequenceAck: MTU is not enabled because the last sequence has not yet been acknowledged.
1) Preparation (create transmit array):
- The CPU must split up the message into valid segments and create the necessary control bytes.
- The CPU must add the segments and control bytes to the transmit array.
2) Transmit:
- The CPU transfers the current element of the transmit array to OutputMTU.
→ OutputMTU is transferred cyclically to the module's transmit buffer but not processed further.
- The CPU must increase OutputSequenceCounter.
Reaction:
- The module accepts the bytes from the internal receive buffer and adds them to the internal receive array.
- The module transmits acknowledgment and writes the value of OutputSequenceCounter to OutputSequenceAck.
3) Completion:
- The CPU must monitor OutputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via OutputSequenceAck. In order to detect potential trans-
fer errors in the last sequence as well, it is important to make sure that the length of the Completion phase is run through long enough.

Note:
To monitor communication times exactly, the task cycles that have passed since the last increase of OutputSequenceCounter should be counted. In this way,
the number of previous bus cycles necessary for the transfer can be measured. If the monitoring counter exceeds a predefined threshold, then the sequence
can be considered lost.
(The relationship of bus to task cycle can be influenced by the user so that the threshold value must be determined individually.)
- Subsequent sequences are only permitted to be transmitted in the next bus cycle after the completion check has been carried out successfully.

26 Data sheet V 3.31

X20(c)CS1030

Message larger than OutputMTU
The transmit array, which must be created in the program sequence, consists of several elements. The user has
to arrange the control and data bytes correctly and transfer the array elements one after the other. The transfer
algorithm remains the same and is repeated starting at the point Cyclic checks.
General flowchart

SynchronisationSequence handling

No

No

Yes

Yes

Yes

No No

Yes

No

NoYes

Yes

(diff ≤ limit)
AND (OutputSyncAck = 1)
AND (OutputSyncBit = 1) ?

copy next sequence to MTU
increase OutputSequenceCounter

OutputSequenceAck =
OutputSequenceCounter ?

OutputSequenceAck = 0 ?

OutputSequenceCounter = 1 OutputSyncBit = 1 OutputSequenceCounter = 0
LastValidAck = 0

LastValidAck =
OutputSequenceAck

LastValidAck =
OutputSequenceCounter ?

More sequences to be sent ?

diff = 0 ?

LastValidAck =
OutputSequenceAck

Start

►

►

diff = (OutputSequenceCounter -
OutputSequenceAck) AND 7
limit = (OutputSequenceCounter -
LastValidAck) AND 7

Figure 6: Flowchart for the output direction

Data sheet V 3.31 27

X20(c)CS1030

11.10.4.6 Receiving data from a module (input)

When receiving data, the transmit array is generated by the module, transferred via Flatstream and must then be
reproduced in the receive array. The structure of the incoming data stream can be set with the mode register. The
algorithm for receiving the data remains unchanged in this regard.

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

RxBytes

InputMTU must be
added at the end of the
receive array
(increase InputSequenceAck
to end correctly)

If counter
InputSequence
is increased:

Receive array
Type: USINT

InputMTU
Type: USINT

PLC / Bus controller

InputMTU is
adapted cyclically to the
receive buffer
via X2X

_data_01
_data_02
_data_03
_data_04
_data_05

_data_xx
. . .

*TxBytes

Module-internal
transmit array
Type: USINT

Module-internal
transmit buffer
Type: USINT

Module

Cycl.

Module increases the
InputSequence counter

If permitted:
Module fills the internal
transmit buffer with the
next sequence of the
transmit array

Figure 7: Flatstream communication (input)

Algorithm
0) Cyclic status query:
- The CPU must monitor InputSequenceCounter.
Cyclic checks:
- The module checks InputSyncAck.
- The module checks InputSequenceAck.
Preparation:
- The module forms the segments and control bytes and creates the transmit array.
Action:
- The module transfers the current element of the internal transmit array to the internal transmit buffer.
- The module increases InputSequenceCounter.
1) Receiving (as soon as InputSequenceCounter is increased):
- The CPU must apply data from InputMTU and append it to the end of the receive array.
- The CPU must match InputSequenceAck to InputSequenceCounter of the sequence currently being processed.
Completion:
- The module monitors InputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via InputSequenceAck.
- Subsequent sequences are only transmitted in the next bus cycle after the completion check has been carried out successfully.

28 Data sheet V 3.31

X20(c)CS1030

General flowchart

Se
gm

en
t d

at
a

ha
nd

lin
g

Sy
nc

hr
on

is
at

io
n

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes No

No

No

Yes

Yes

No

Yes

No
InputSyncAck = 1 ? InputSequenceAck > 0 ?

InputSyncAck = 1

(InputSequenceCounter –
InputSequenceAck)

AND 0x07 = 1 ?

MTU_Offset = 0

RemainingSegmentSize = 0 ?

► DataSize = InputMTU_Size – MTU_Offset

RemainingSegmentSize >
(InputMTU_Size – MTU_Offset) ?

► DataSize = RemainingSegmentSize

RemainingSegmentSize = 0 AND
(SegmentFlags AND 0x40) = 0 ?

InputMTU_Size = MTU_Offset ?

RemainingSegmentSize = 0 AND
(SegmentFlags AND 0x80) = 0 ?

► InputSequenceAck =
InputSequenceCounter

► Mark Frame as complete

InputSyncBit = 1 ?

Start

►
►
►

InputSequenceAck = InputSequenceCounter
RemainingSegmentSize = 0
SegmentFlags = 0

►

►

►

RemainingSegmentSize =
MTU_Data[MTU_Offset] AND 0b0011 1111
SegmentFlags =
MTU_Data[MTU_Offset] AND 0b1100 0000
MTU_Offset = MTU_Offset + 1

►
►
►

copy segment data e.g. memcpy(xxx, ADR(MTU_Data[MTU_Offset]), DataSize)
MTU_Offset = MTU_Offset + DataSize
RemainingSegmentSize = RemainingSegmentSize - DataSize

Figure 8: Flowchart for the input direction

Data sheet V 3.31 29

X20(c)CS1030

11.10.4.7 Details

It is recommended to store transferred messages in separate receive arrays.
After a set MessageEndBit is transmitted, the subsequent segment should be added to the receive array. The
message is then complete and can be passed on internally for further processing. A new/separate array should
be created for the next message.

Information:
When transferring with MultiSegmentMTUs, it is possible for several small messages to be part of one
sequence. In the program, it is important to make sure that a sufficient number of receive arrays can
be managed. The acknowledge register is only permitted to be adjusted after the entire sequence has
been applied.

If SequenceCounter is incremented by more than one counter, an error is present.

Note: This situation is very unlikely when operating without "Forward" functionality.
In this case, the receiver stops. All additional incoming sequences are ignored until the transmission with the correct
SequenceCounter is retried. This response prevents the transmitter from receiving any more acknowledgments for
transmitted sequences. The transmitter can identify the last successfully transferred sequence from the opposite
station's SequenceAck and continue the transfer from this point.
Acknowledgments must be checked for validity.
If the receiver has successfully accepted a sequence, it must be acknowledged. The receiver takes on the value
of SequenceCounter sent along with the transmission and matches SequenceAck to it. The transmitter reads
SequenceAck and registers the successful transmission. If the transmitter acknowledges a sequence that has not
yet been dispatched, then the transfer must be interrupted and the channel resynchronized. The synchronization
bits are reset and the current/incomplete message is discarded. It must be sent again after the channel has been
resynchronized.

30 Data sheet V 3.31

X20(c)CS1030

11.10.4.8 Flatstream mode

Name:
FlatstreamMode
In the input direction, the transmit array is generated automatically. This register offers 2 options to the user that
allow an incoming data stream to have a more compact arrangement. Once enabled, the program code for eval-
uation must be adapted accordingly.

Information:
All B&R modules that offer Flatstream mode support options "Large segments" and "MultiSegmentM-
TUs" in the output direction. Compact transfer must be explicitly allowed only in the input direction.

Bit structure:
Bit Name Value Information

0 Not allowed (default)0 MultiSegmentMTU
1 Permitted
0 Not allowed (default)1 Large segments
1 Permitted

2 - 7 Reserved

Standard
By default, both options relating to compact transfer in the input direction are disabled.

1. The module only forms segments that are at least one byte smaller than the enabled MTU. Each sequence
begins with a control byte so that the data stream is clearly structured and relatively easy to evaluate.

2. Since a Flatstream message is permitted to be any length, the last segment of the message frequently does
not fill up all of the MTU's space. By default, the remaining bytes during this type of transfer cycle are not used.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- - -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

ME0

C

Figure 9: Message arrangement in the MTU (default)

Data sheet V 3.31 31

X20(c)CS1030

MultiSegmentMTUs allowed
With this option, InputMTU is completely filled (if enough data is pending). The previously unfilled Rx bytes transfer
the next control bytes and their segments. This allows the enabled Rx bytes to be used more efficiently.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 4

Message 1 Message 2

ME0

C
ME0

C

3

Figure 10: Arrangement of messages in the MTU (MultiSegmentMTUs)

Large segments allowed:
When transferring very long messages or when enabling only very few Rx bytes, then a great many segments must
be created by default. The bus system is more stressed than necessary since an additional control byte must be
created and transferred for each segment. With option "Large segments", the segment length is limited to 63 bytes
independently of InputMTU. One segment is permitted to stretch across several sequences, i.e. it is possible for
"pure" sequences to occur without a control byte.

Information:
It is still possible to split up a message into several segments, however. If this option is used and
messages with more than 63 bytes occur, for example, then messages can still be split up among
several segments.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- - -
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

-

Figure 11: Arrangement of messages in the MTU (large segments)

32 Data sheet V 3.31

X20(c)CS1030

Using both options
Using both options at the same time is also permitted.

Bus cycle 1

Control byte with MessageEndBit = 0

Bus cycle 2 Bus cycle 3

- --
ME1

C
ME1

C

ME0

C

ME1

C Control byte with MessageEndBit = 1

Segment 1 Segment 2 Segment 3

Message 1 Message 2

-

Figure 12: Arrangement of messages in the MTU (large segments and MultiSegmentMTUs)

Data sheet V 3.31 33

X20(c)CS1030

11.10.4.9 Adjusting the Flatstream

If the way messages are structured is changed, then the way data in the transmit/receive array is arranged is also
different. The following changes apply to the example given earlier.
MultiSegmentMTU
If MultiSegmentMTUs are allowed, then "open positions" in an MTU can be used. These "open positions" occur if
the last segment in a message does not fully use the entire MTU. MultiSegmentMTUs allow these bits to be used to
transfer the subsequent control bytes and segments. In the program sequence, the "nextCBPos" bit in the control
byte is set so that the receiver can correctly identify the next control byte.
Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows the transfer of MultiSegmentMTUs.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4

C2

A1

A7

A5 A6C1

B1 B2C3 C4 D1

D2 D3 D4 D5 D6C5 D7

D8 - -C0

- --- -C0 -

- --- -C0 -

C6

MultiSegmentMTU

-D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 13: Transmit/receive array (MultiSegmentMTUs)

34 Data sheet V 3.31

X20(c)CS1030

First, the messages must be split into segments. As in the default configuration, it is important for each sequence
to begin with a control byte. The free bits in the MTU at the end of a message are filled with data from the following
message, however. With this option, the "nextCBPos" bit is always set if payload data is transferred after the control
byte.
MTU = 7 bytes → Max. segment length = 6 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 6 bytes of data (MTU full)
➯ Second segment = Control byte + 1 byte of data (MTU still has 5 open bytes)

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data (MTU still has 2 open bytes)

• Message 3 (9 bytes)

➯ First segment = Control byte + 1 byte of data (MTU full)
➯ Second segment = Control byte + 6 bytes of data (MTU full)
➯ Third segment = Control byte + 2 bytes of data (MTU still has 4 open bytes)

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (6) = 6 - SegmentLength (1) = 1 - SegmentLength (2) = 2
- nextCBPos (1) = 64 - nextCBPos (1) = 64 - nextCBPos (1) = 64
- MessageEndBit (0) = 0 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 70 Control byte Σ 193 Control byte Σ 194

Table 5: Flatstream determination of the control bytes for the MultiSegmentMTU example (part 1)

Warning!
The second sequence is only permitted to be acknowledged via SequenceAck if it has been completely
processed. In this example, there are 3 different segments within the second sequence, i.e. the program
must include enough receive arrays to handle this situation.

C4 (control byte 4) C5 (control byte 5) C6 (control byte 6)
- SegmentLength (1) = 1 - SegmentLength (6) = 6 - SegmentLength (2) = 2
- nextCBPos (6) = 6 - nextCBPos (1) = 64 - nextCBPos (1) = 64
- MessageEndBit (0) = 0 - MessageEndBit (1) = 0 - MessageEndBit (1) = 128
Control byte Σ 7 Control byte Σ 70 Control byte Σ 194

Table 6: Flatstream determination of the control bytes for the MultiSegmentMTU example (part 2)

Data sheet V 3.31 35

X20(c)CS1030

Large segments
Segments are limited to a maximum of 63 bytes. This means they can be larger than the active MTU. These large
segments are divided among several sequences when transferred. It is possible for sequences to be completely
filled with payload data and not have a control byte.

Information:
It is still possible to subdivide a message into several segments so that the size of a data packet does
not also have to be limited to 63 bytes.

Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows the transfer of large segments.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4A1

A7

A5 A6C1

B1 B2C2

C3 D1 D2 D3 D4 D5 D6

D7 D8 - -

-

-

-

- -

-

- --- -C0 -

- - - -

-

Large segments

-

D9

Transmit/Receive array

With 7 USINT elements according to
the configurable MTU size

Figure 14: Transmit/receive array (large segments)

First, the messages must be split into segments. The ability to form large segments means that messages are split
up less frequently, which results in fewer control bytes generated.
Large segments allowed → Max. segment length = 63 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 7 bytes of data

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 9 bytes of data

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (7) = 7 - SegmentLength (2) = 2 - SegmentLength (9) = 9
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 135 Control byte Σ 130 Control byte Σ 137

Table 7: Flatstream determination of the control bytes for the large segment example

36 Data sheet V 3.31

X20(c)CS1030

Large segments and MultiSegmentMTU
Example
3 autonomous messages (7 bytes, 2 bytes and 9 bytes) are being transmitted using an MTU with a width of 7 bytes.
The configuration allows transfer of large segments as well as MultiSegmentMTUs.

Message 1:

A1 A2 A3 A4 A5 A6 A7

B1 B2

D1 D2 D3 D4 D5 D6 D7 D8

No more data to transmit

- - ...-

Message 2:

Message 3:

Sequence for bus cycle 1

Sequence for bus cycle 2

Sequence for bus cycle 3

Sequence for bus cycle 4

Sequence for bus cycle 5

Sequence for bus cycle 6

D9

A2 A3 A4A1 A5 A6C1

A7 C2 B1 B2 C3 D1 D2

D3 D4 D5 D6 D7 D8

- -C0 - - -

- -C0 - - - -

- -C0 - - - -

Both options

-

D9

Transmit/Receive array
With 7 USINT elements according to

the configurable MTU size

Figure 15: Transmit/receive array (large segments and MultiSegmentMTUs)

First, the messages must be split into segments. If the last segment of a message does not completely fill the MTU,
it is permitted to be used for other data in the data stream. Bit "nextCBPos" must always be set if the control byte
belongs to a segment with payload data.
The ability to form large segments means that messages are split up less frequently, which results in fewer control
bytes generated. Control bytes are generated in the same way as with option "Large segments".
Large segments allowed → Max. segment length = 63 bytes

• Message 1 (7 bytes)

➯ First segment = Control byte + 7 bytes of data

• Message 2 (2 bytes)

➯ First segment = Control byte + 2 bytes of data

• Message 3 (9 bytes)

➯ First segment = Control byte + 9 bytes of data

• No more messages

➯ C0 control byte

A unique control byte must be generated for each segment. In addition, the C0 control byte is generated to keep
communication on standby.
C1 (control byte 1) C2 (control byte 2) C3 (control byte 3)
- SegmentLength (7) = 7 - SegmentLength (2) = 2 - SegmentLength (9) = 9
- nextCBPos (0) = 0 - nextCBPos (0) = 0 - nextCBPos (0) = 0
- MessageEndBit (1) = 128 - MessageEndBit (1) = 128 - MessageEndBit (1) = 128
Control byte Σ 135 Control byte Σ 130 Control byte Σ 137

Table 8: Flatstream determination of the control bytes for the large segment and MultiSegmentMTU example

Data sheet V 3.31 37

X20(c)CS1030

11.10.5 Example of function "Forward" with X2X Link

Function "Forward" is a method that can be used to substantially increase the Flatstream data rate. The basic
principle is also used in other technical areas such as "pipelining" for microprocessors.

11.10.5.1 Function principle

X2X Link communication cycles through 5 different steps to transfer a Flatstream sequence. At least 5 bus cycles
are therefore required to successfully transfer the sequence.

Step I Step II Step III Step IV Step V
Actions Transfer sequence from

transmit array,
increase SequenceCounter

Cyclic matching of MTU and
module buffer

Append sequence to re-
ceive array,
adjust SequenceAck

Cyclic synchronization
MTU and module buffer

Check SequenceAck

Resource Transmitter
(task to transmit)

Bus system
(direction 1)

Receiver
(task to receive)

Bus system
(direction 2)

Transmitter
(task for Ack checking)

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

. . .

Step I Step II Step III Step IV Step V

Time

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Figure 16: Comparison of transfer without/with Forward

Each of the 5 steps (tasks) requires different resources. If Forward functionality is not used, the sequences are
executed one after the other. Each resource is then only active if it is needed for the current sub-action.
With Forward, a resource that has executed its task can already be used for the next message. The condition for
enabling the MTU is changed to allow for this. Sequences are then passed to the MTU according to the timing. The
transmitting station no longer waits for an acknowledgment from SequenceAck, which means that the available
bandwidth can be used much more efficiently.
In the most ideal situation, all resources are working during each bus cycle. The receiver still has to acknowledge
every sequence received. Only when SequenceAck has been changed and checked by the transmitter is the
sequence considered as having been transferred successfully.

38 Data sheet V 3.31

X20(c)CS1030

11.10.5.2 Configuration

The Forward function must only be enabled for the input direction. 2 additional configuration registers are available
for doing so. Flatstream modules have been optimized in such a way that they support this function. In the output
direction, the Forward function can be used as soon as the size of OutputMTU is specified.

11.10.5.2.1 Number of unacknowledged sequences

Name:
Forward
With register "Forward", the user specifies how many unacknowledged sequences the module is permitted to
transmit.

Recommendation:
X2X Link: Max. 5
POWERLINK: Max. 7
Data type Values
USINT 1 to 7

Default: 1

11.10.5.2.2 Delay time

Name:
ForwardDelay
Register "ForwardDelay" is used to specify the delay time in microseconds. This is the amount of time the module
has to wait after sending a sequence until it is permitted to write new data to the MTU in the following bus cycle.
The program routine for receiving sequences from a module can therefore be run in a task class whose cycle time
is slower than the bus cycle.
Data type Values
UINT 0 to 65535 [µs]

Default: 0

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Time

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step I Step II Step III Step IV Step V

Step II

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Figure 17: Effect of ForwardDelay when using Flatstream communication with the Forward function

In the program, it is important to make sure that the CPU is processing all of the incoming InputSequences and In-
putMTUs. The ForwardDelay value causes delayed acknowledgment in the output direction and delayed reception
in the input direction. In this way, the CPU has more time to process the incoming InputSequence or InputMTU.

Data sheet V 3.31 39

X20(c)CS1030

11.10.5.3 Transmitting and receiving with Forward

The basic algorithm for transmitting and receiving data remains the same. With the Forward function, up to 7
unacknowledged sequences can be transmitted. Sequences can be transmitted without having to wait for the
previous message to be acknowledged. Since the delay between writing and response is eliminated, a considerable
amount of additional data can be transferred in the same time window.
Algorithm for transmitting
Cyclic status query:
- The module monitors OutputSequenceCounter.
0) Cyclic checks:
- The CPU must check OutputSyncAck.
→ If OutputSyncAck = 0: Reset OutputSyncBit and resynchronize the channel.
- The CPU must check whether OutputMTU is enabled.
→ If OutputSequenceCounter > OutputSequenceAck + 7, then it is not enabled because the last sequence has not yet been acknowledged.
1) Preparation (create transmit array):
- The CPU must split up the message into valid segments and create the necessary control bytes.
- The CPU must add the segments and control bytes to the transmit array.
2) Transmit:
- The CPU must transfer the current part of the transmit array to OutputMTU.
- The CPU must increase OutputSequenceCounter for the sequence to be accepted by the module.
- The CPU is then permitted to transmit in the next bus cycle if the MTU has been enabled.
The module responds since OutputSequenceCounter > OutputSequenceAck:
- The module accepts data from the internal receive buffer and appends it to the end of the internal receive array.
- The module is acknowledged and the currently received value of OutputSequenceCounter is transferred to OutputSequenceAck.
- The module queries the status cyclically again.
3) Completion (acknowledgment):
- The CPU must check OutputSequenceAck cyclically.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via OutputSequenceAck. In order to detect potential trans-
fer errors in the last sequence as well, it is important to make sure that the algorithm is run through long enough.

Note:
To monitor communication times exactly, the task cycles that have passed since the last increase of OutputSequenceCounter should be counted. In this way,
the number of previous bus cycles necessary for the transfer can be measured. If the monitoring counter exceeds a predefined threshold, then the sequence
can be considered lost (the relationship of bus to task cycle can be influenced by the user so that the threshold value must be determined individually).

Algorithm for receiving
0) Cyclic status query:
- The CPU must monitor InputSequenceCounter.
Cyclic checks:
- The module checks InputSyncAck.
- The module checks if InputMTU for enabling.
→ Enabling criteria: InputSequenceCounter > InputSequenceAck + Forward
Preparation:
- The module forms the control bytes / segments and creates the transmit array.
Action:
- The module transfers the current part of the transmit array to the receive buffer.
- The module increases InputSequenceCounter.
- The module waits for a new bus cycle after time from ForwardDelay has expired.
- The module repeats the action if InputMTU is enabled.
1) Receiving (InputSequenceCounter > InputSequenceAck):
- The CPU must apply data from InputMTU and append it to the end of the receive array.
- The CPU must match InputSequenceAck to InputSequenceCounter of the sequence currently being processed.
Completion:
- The module monitors InputSequenceAck.
→ A sequence is only considered to have been transferred successfully if it has been acknowledged via InputSequenceAck.

40 Data sheet V 3.31

X20(c)CS1030

Details/Background
1. Illegal SequenceCounter size (counter offset)

Error situation: MTU not enabled
If the difference between SequenceCounter and SequenceAck during transmission is larger than permitted, a
transfer error occurs. In this case, all unacknowledged sequences must be repeated with the old Sequence-
Counter value.

2. Checking an acknowledgment
After an acknowledgment has been received, a check must verify whether the acknowledged sequence has
been transmitted and had not yet been unacknowledged. If a sequence is acknowledged multiple times, a
severe error occurs. The channel must be closed and resynchronized (same behavior as when not using
Forward).

Information:
In exceptional cases, the module can increment OutputSequenceAck by more than 1 when using
Forward.
An error does not occur in this case. The CPU is permitted to consider all sequences up to the
one being acknowledged as having been transferred successfully.

3. Transmit and receive arrays
The Forward function has no effect on the structure of the transmit and receive arrays. They are created and
must be evaluated in the same way.

Data sheet V 3.31 41

X20(c)CS1030

11.10.5.4 Errors when using Forward

In industrial environments, it is often the case that many different devices from various manufacturers are being
used side by side. The electrical and/or electromagnetic properties of these technical devices can sometimes cause
them to interfere with one another. These kinds of situations can be reproduced and protected against in laboratory
conditions only to a certain point.
Precautions have been taken for X2X Link transfers if this type of interference occurs. For example, if an invalid
checksum occurs, the I/O system will ignore the data from this bus cycle and the receiver receives the last valid
data once more. With conventional (cyclic) data points, this error can often be ignored. In the following cycle, the
same data point is again retrieved, adjusted and transferred.
Using Forward functionality with Flatstream communication makes this situation more complex. The receiver re-
ceives the old data again in this situation as well, i.e. the previous values for SequenceAck/SequenceCounter and
the old MTU.
Loss of acknowledgment (SequenceAck)
If a SequenceAck value is lost, then the MTU was already transferred properly. For this reason, the receiver is per-
mitted to continue processing with the next sequence. The SequenceAck is aligned with the associated Sequence-
Counter and sent back to the transmitter. Checking the incoming acknowledgments shows that all sequences up
to the last one acknowledged have been transferred successfully (see sequences 1 and 2 in the image).
Loss of transmission (SequenceCounter, MTU):
If a bus cycle drops out and causes the value of SequenceCounter and/or the filled MTU to be lost, then no data
reaches the receiver. At this point, the transmission routine is not yet affected by the error. The time-controlled
MTU is released again and can be rewritten to.
The receiver receives SequenceCounter values that have been incremented several times. For the receive array
to be put together correctly, the receiver is only permitted to process transmissions whose SequenceCounter has
been increased by one. The incoming sequences must be ignored, i.e. the receiver stops and no longer transmits
back any acknowledgments.
If the maximum number of unacknowledged sequences has been sent and no acknowledgments are returned, the
transmitter must repeat the affected SequenceCounter and associated MTUs (see sequence 3 and 4 in the image).

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III Step IV Step V

Bus cycle 1 Bus cycle 2 Bus cycle 3 Bus cycle 4 Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Step I Step II Step III Step IV Step V

Time

Bus cycle 1 Bus cycle 2 Bus cycle 3 EMC Bus cycle 5 Bus cycle 6 Bus cycle 7 Bus cycle 8 Bus cycle 9 Bus cycle 10

Time

Sequence 1

Sequence 2

Sequence 3

Step I Step II Step III

Step I Step II Step III Step IV Step V

Step I Step II

Step I Step II Step III Step IV Step V

Sequence 4 Step I Step II Step III Step IV Step V

Step I Step II

Step I Step II Step III

Step I Step IISequence 4

Figure 18: Effect of a lost bus cycle

Loss of acknowledgment
In sequence 1, the acknowledgment is lost due to disturbance. Sequences 1 and 2 are therefore acknowledged
in Step V of sequence 2.
Loss of transmission
In sequence 3, the entire transmission is lost due to disturbance. The receiver stops and no longer sends back
any acknowledgments.
The transmitting station continues transmitting until it has issued the maximum permissible number of unacknowl-
edged transmissions.
5 bus cycles later at the earliest (depending on the configuration), it begins resending the unsuccessfully sent
transmissions.

42 Data sheet V 3.31

X20(c)CS1030

11.11 Serial with FlatStream

When using FlatStream communication, the module acts as a bridge between the X2X Link master and an intelligent
field device connected to the module. FlatStream mode can be used for either point-to-point connections as well
as for multidrop systems. Specific algorithms such as timeout and checksum monitoring are usually managed
automatically. During normal operation, the user does not have access to these details.
In a serial network, the module is always the master (DTE). Various adjustments can be made to ensure that
signals are transmitted without errors.
The user can, for example, define a handshake algorithm or set the baud rate in order to adapt the transmission
quality to the requirements of the application.
Operation
When using FlatStream, the general structure of the FlatStream frame must be maintained.

Input/Output sequence Tx/Rx bytes
(unchanged) Control byte (unchanged) Serial frame (without hand-

shake or similar measures)

11.12 Acyclic frame size

Name:
AsynSize
When the stream is used, data is exchanged internally between the module and CPU. For this purpose, a defined
amount of acyclic bytes is reserved for this slot.
Increasing the acyclic frame size leads to increased data throughput on this slot.

Information:
This configuration involves a driver setting that cannot be changed during runtime!

Data type Value Information
- 8 to 28 Acyclic frame size in bytes. Default = 24

11.13 Minimum cycle time

The minimum cycle time specifies how far the bus cycle can be reduced without communication errors occurring.
It is important to note that very fast cycles reduce the idle time available for handling monitoring, diagnostics and
acyclic commands.

Minimum cycle time
200 µs

11.14 Minimum I/O update time

The minimum I/O update time specifies how far the bus cycle can be reduced so that an I/O update is performed
in each cycle.

Minimum I/O update time
200 µs

Data sheet V 3.31 43

	X20(c)CS1030
	1 General information
	2 Coated modules
	3 Order data
	4 Technical data
	5 LED status indicators
	6 Pinout
	7 Terminating resistor
	8 Derating
	9 Usage after the X20IF1091-1
	10 UL certificate information
	11 Register description
	11.1 General data points
	11.2 Function model 2 - Stream and Function model 254 - Cyclic stream
	11.3 Function model 254 - Flatstream
	11.4 Function model 254 - Bus controller
	11.4.1 Using the module on the bus controller
	11.4.2 CAN I/O bus controller

	11.5 Serial interface - Configuration
	11.5.1 Mode
	11.5.2 Baud rate
	11.5.3 Number of data bits
	11.5.4 Number of stop bits
	11.5.5 Type of parity check

	11.6 Handshake - Configuration
	11.6.1 Locking the receive buffer
	11.6.2 Unlocking the receive buffer
	11.6.3 Turn on software handshake
	11.6.4 Turn off software handshake
	11.6.5 Handshake repetition

	11.7 Frame - Configuration
	11.7.1 Terminating when a receive timeout occurs
	11.7.2 Terminating when a transmit timeout occurs
	11.7.3 Maximum number of bytes received
	11.7.4 Maximum number of bytes transmitted
	11.7.5 Define receive terminator
	11.7.6 Define transmit terminator

	11.8 Status messages - Configuration
	11.8.1 Error detection setting
	11.8.2 Forward error to the application

	11.9 Status messages - Communication
	11.9.1 Error message status bits
	11.9.2 Acknowledging the status bits

	11.10 Flatstream communication
	11.10.1 Introduction
	11.10.2 Message, segment, sequence, MTU
	11.10.3 The Flatstream principle
	11.10.4 Registers for Flatstream mode
	11.10.4.1 Flatstream configuration
	11.10.4.1.1 Number of enabled Tx and Rx bytes

	11.10.4.2 Flatstream operation
	11.10.4.2.1 Format of input and output bytes
	11.10.4.2.2 Transport of payload data and control bytes
	11.10.4.2.3 Control bytes
	11.10.4.2.4 Communication status of the CPU
	11.10.4.2.5 Communication status of the module
	11.10.4.2.6 Relationship between OutputSequence and InputSequence

	11.10.4.3 Synchronization
	11.10.4.4 Transmitting and receiving
	11.10.4.5 Transmitting data to a module (output)
	11.10.4.6 Receiving data from a module (input)
	11.10.4.7 Details
	11.10.4.8 Flatstream mode
	11.10.4.9 Adjusting the Flatstream

	11.10.5 Example of function "Forward" with X2X Link
	11.10.5.1 Function principle
	11.10.5.2 Configuration
	11.10.5.2.1 Number of unacknowledged sequences
	11.10.5.2.2 Delay time

	11.10.5.3 Transmitting and receiving with Forward
	11.10.5.4 Errors when using Forward

	11.11 Serial with FlatStream
	11.12 Acyclic frame size
	11.13 Minimum cycle time
	11.14 Minimum I/O update time

